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ABSTRACT

A new Monte-Carlo simulation model for computing the temporal development of cloud droplet spectra
is presented. Since the simulation is carried out in probability space, the new model does not need to follow
the growth history and position of each and every drop. Additional physical processes, such as turbulence,
electrical effects, glaciation, etc., can be added to the primary growth process of gravitational coagulation

with relative ease. The main features of the model are demonstrated by several numerical examples.

i. Introduction

In an earlier paper Kornfeld et al. (1968) proposed a
method for direct numerical simulation of the process
of cloud droplet growth by accretion. However, the
simplicity of the method, which raised hopes for a
possible future inclusion of other complex physical
processes (such as turbulence and electrical effects),
was offset by the excessive demands this method pre-
sented in terms of computer memory and speed.

The basic reason for this was the fact that the
simulation was carried out in geometrical space, in-
dividually following the growth history of each and
every drop. In order to overcome this handicap, the
present simulation model was devised. Here, geometrical
space was dropped in favor of probability space, and
groups of common-size drops were substituted for the
individual drops in the old simulation model.

The new simulation model is described in Section 2.
Section 3 shows some numerical examples, where some
applications of the new method are demonstrated.
Conclusions are drawn in Section 4.

2. Direct simulation in probability space

Assuming that all drops are randomly distributed
throughout the cloud, with #, drops per unit volume
per radius interval of radii 7o<7< 73, and n; drops for
r:<7< 741, then any group #; is randomly distributed
in any partial volume of the whole cloud. If the total
volume under consideration is 1, then the probability

1 This work was accomplished while the author was a Senior
Research Associate of the National Academy of Science—National
Research Council, at the Goddard Institute for Space Studies in
New York.

p of a specific particle being found in a region whose
volume is V will be V/1=p. Let g=1—5. Then the
probability that exactly % particles distributed uni-
formly at random are found in the volume V is

( j) ko (nj~k)
i .

Thus, the distribution function is the binomial dis-
tribution. In particular, the number of j drops with
radius 7; in a given volume V can be determined by
sampling from a random number generator with a
binomial distribution and a mean »;V. (This is, of
course, also the expected number.)

We now define V to be the volume swept, during a
time interval Af, by the effective cross section of a
single drop of group #; [ =wR?, where R; is the effec-
tive radius for collection of a single drop of group #;,
or R,=y;,r;, where y,, is the linear collision efficiency
of (r4,;)] as shown in Fig. 1, i.e.,

V=haR&=avy: 30, (¢Y)

where 2; is the fall velocity relative to 7;, of an individual
particle of the group 7., and k; is the effective vertical
distance, with respect to j drops, traveled by this
particle during time A/

The simulation process is then carried out in the
following simple fashion:

1) Choose drops from an initial spectrum, for a
given partial volume of the cloud V. Define N;=Vn,.

2) Define a time interval Af.

3) Find, with the aid of the random number gener-
ator, the number of drops of size j to be collected hy
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one drop of size 7. This number, multiplied by N; is

N o= total number of j drops to be collected
© "7 | during the time interval At by all 7 drops

4) Do (3) for all i> j, resulting in

Neoo Nee10m - Veor - Vi
R A S
N Neoni Vi

Nig—2 Ni—1,5—2
N k-1

Column m gives the breakdown of the number of
drops of sizes 0, 1, ..., m—1 to be collected during Af
by all m drops. Row # gives the breakdown of the
number of drops of size #, to be collected during At by
drops of sizes n4-1, n+42, ... k.

U

%
No< 2 Nig, (2)

l=n+1

reset Af to be half of its value and return to (3). Various
other schemes were tried to optimize the choice of At
Initially, it was set to 10 sec. A typical scheme was to
increase At by 109, if condition (2) were not satisfied
and to multiply it by 0.5 otherwise. Such a scheme,
it was hoped, would iterate around an optimal value.
The problem, however, is that too many steps are then
taken with a A that is too large, thus wasting computer
time. Experimentation led to the conclusion that the
halving scheme used for Af was about as good as any,
and had the advantages of simplicity.
6) Compute the spectrum at {4-At by

k

Nt A)=No()— 3 N 3)

l=n+1

7) Compute the new radius of the group, ¥, (i4Af),
by

1 n—1 3
<rn3-|--—- > Jv“,,jrjs) =7, 4)

N, =0

Eq. (3) shows the loss of drops in each category due to
combinations with larger drops. Eq. (4) shows the
growth of the radiz of the larger drops. In this formula-
tion, therefore, it is unnecessary to consider the forma-
tion of a large droplet from smaller droplets; all large
droplets come from a process of accretion to a droplet
treated as if it were large. This point may be under-
stood more easily if it is realized that once the particles
and associated radii are chosen from the appropriate
distributions, each particle then has a fixed radius
associated with it. This method preserves the liquid
water content (LWC) of the cloud.
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h; =V, At

1'16. 1. Volume containing j drops to be swept by one £ drop.

As each individual run, resulting from a repetitive
application of sequences 1)-7), produces a particular
realization, an “experiment” is defined as the temporal
average of many such runs. It was found by experience
that if “1000” is substituted for “many,” a reasonably
stable average is reached. Each of the 1000 initial
distributions is formed by choosing a uniformly dis-
tributed random radius in each of 14 successive 2 u
intervals. The total expected LWC of that 2 ux interval
is assigned to droplets of that chosen size.

3. Results
a. Temporal development of a cloud drop spectrum

Fig. 2 shows the temporal development resulting from
the simulation model, of an initial cloud drop spectrum
similar to the one used by Berry (1967), for geometric
sweep-out. As explained above, this is an average of
1000 individual realizations, each using a different
chain of random numbers. The function g(lnr) is
computed by using right-sided differences where
differentials are called for except that at the first point
in the graphs, g{lnz) is approximated to be zero ar-
bitrarily, The random number chain used was the
standard one given in the IBM Scientific Subroutine
Package.

In our approach, after the #; drops are chosen at
random from the specified distribution, a single radius
between 7; and 7;4. is assigned to the whole group.
This radius, renamed 7;, is allowed to change as these
drops grow larger. It should be noted that the number
of drops in each group becomes monotonically smaller
as time progresses while the size becomes monotonically
larger. Because of the vagaries of probablistic processes,
it could happen that for 2<j, »,>7;. In such a case,
interchanges of notation would be made at the end of
the step so that 7;<r; for i< j. Each point represents
an average over 1000 trials.

As can be seen, a secondary peak which starts form-
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F1G. 2. Temporal development of a cloud droplet spectrum at
400, 600, 800 and 1000 sec for geometric sweep-out : G {lnr)=con-
stant 7/ (), where fis the density function (cf. Berry, 1967).

ing at about /=400 sec, becomes quite pronounced at
1=600 sec, and at {=800 sec becomes the dominant
feature of the curve.

Compared to Berry’s results, one notes that in the
simulation model the liquid water starts to shift to
drops of larger radii at a later time, while the primary
peak (at r=11 ) persists longer.

A possible explanation of this discrepancy between
the results of the two models may be found in Long’s
(1971) assumption [ (a), p. 211)] that the time interval
of the numerical integration should be small enough
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Fic. 3. Max 4 (r;,At) [defined in Eq. (5)] for At=5 sec.

so that only binary collisions occur during each Af; the
criterion for this condition to be fulfilled is

Alroh) = / pr(rors; A)N(rDdrs<t,  (5)
1}

where pr(r;,r;; Af) is the probability that drop ; will be
collected by drop 7; during the time interval Af, and
N (rj,t)dr; is the number of drops of radius between 7;
and 7,+}dr; at time &.

Fig. 3 shows the maximum (over all ) of A (r;,Af),
as a function of time, for our reconstruction of Berry’s
integration of the coagulation equation. As can be
seen, when Golovin’s (1963) kernel is used, Long’s
condition is approximately satisfied, while when geo-
metric sweep-out is assumed this condition is far from
being met. In running several integrations, each with
a smaller A, it became obvious that Af would have to
be made so small for Long’s condition to be met as to
make the integration impractical. These integrations
were made with a replication of Berry’s integration of
the coagulation equation. The integration is an Euler
method in time with the trapezoidal rule used in space.
More complicated schemes gave the same or worse
results.

b. An experiment with a freezing mechanism in a super-
cooled cloud

In order to demonstrate the simulation model’s
capacity of including various other physical processes
along with the gravitational coagulation growth, an
experiment was run in which the cloud was assumed
to be supercooled, with freezing nuclei (number density
of 1 cm™3, radius 0.1 u) interacting with the drops.
When a drop captures an ice nucleus it is assigned a
certain probability of freezing, and thus of becoming
an ice particle. For a set of hypothetical conditions
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[updraft of 2m sec! and initial positioning of the
simulated volume anywhere between the zero isotherm
and the top of the cloud (assumed to be at —40C,
which is also the temperature for homogeneous nuclea-
tion) ], one gets for the above-mentioned probability

Al

~— 6
g 2500 ©

Ice particles can form by one of two alternatives: (i)
capture by a water drop of an ice nucleus, and freezing
at such time as determined by Eq. (6); and (ii) capture
of a water drop by an ice particle, resulting in instan-
taneous freezing. Ice-ice coalescence was assumed not
to occur. .
Figs. 4 and 5 show the temporal development of the
water drop and ice particle populations, respectively.
As can be seen, very little happens up to about 600
sec, when glaciation starts. At £=_800 sec, an appreciable
part of the large drops (but virtually none of the
smaller ones!) have frozen. .
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F16. 4. Temporal development of a cloud droplet spectrum
(water only), involving supercooled cloud with ice nucleation,
at 600, 700 and 800 sec for geometric sweep-out : G{In7)= constant
7 f(7), where fis the density function (cf. Berry 1967).
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I1c. 5. As in Fig. 4, except for ice particles.

c. The growth history of a drop falling through a changing
spectrum - whooo. i nideel

Chin (1970) has carried out some Monte Carlo
simulation experiments on the growth of a large drop
in a polydispersed cloud, and compared his results
with those predicted by the (continuous) growth equa-
tion. He concludes that spatial inhomogeneity con-
tributes significantly to the broadening of the spectrum.
While we concur with his general conclusions, we feel
that the fact that he used a steady-state (rather than
a continuously changing) spectrum may distort the
actual effect.

Tig. 6 shows a comparison between two growth curves
of a drop—one while falling through a steady-state
spectrum (the same as Chin’s), the other while falling
through a spectrum which was initially identical to
Chin’s, but which was changed with time according
to results obtained by integrating the coagulation
equation. In both cases the droplets in the spectrum
were treated by a randomization process as described
in Section 3, at each time step. Thirty-two realizations
were averaged in order to arrive at the curves shown in
Fig. 6. As can be seen, the time-dependent experiment
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Fig. 6. Growth of a large drop in steady and changing spectra.

yields a slower growth curve; the difference gets to be
about 109, for radii of 130 x. The reason for this dif-
ference may be found in the curve on the lower part of
Fig. 6, giving the total unavailable water for growth
of the large drop, as a percentage of the total liquid
water content of the time-dependent spectrum. As can
be seen, after 750 sec, over 25%, of the LWC is con-
centrated in drops which are larger than the “observed
drop,” thus hampering its growth rate.

4. Conclusions

A new, direct numerical simulation model was de-
veloped where cloud droplet growth by accretion is
computed as a stochastic process. Based on our limited
experimentation with this model, we conclude the
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following:

1) Compared to a previously suggested simulation
model (in geometric space), the model is much more
economical in terms of computer time.

2) This method is not subject to the limitation im-
posed by Long’s criterion [Eq. (5)], unlike the numer-
ical integration of the coagulation equation which
fulfills it only in some special cases.

3) Additional physical processes (such as turbulence,
sedimentation, electrical effects, nucleation, condensa-
tion, phase change, etc.) can be added to the primary
process of gravitational coagulation with relative ease.

4) Statistical details of temporal spectrum develop-
ment (such as the distribution of many individual
realizations around the mean) would be readily
available.
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